SUPPORT STRATEGIES FOR TUNNELS IN WEAK GROUND AND HIGH OVERBURDEN

Wulf Schubert

Graz University of Technology

3G-Gruppe Geotechnik Graz ZT GmbH

INTRODUCTION

- Tunnelling in poor and faulted ground with high overburden frequently leads to damages in conventional supports
- This often is referred to as "squeezing"
- Definition of this term is difficult, as it is always related to type and quantity of support

TYPICAL DAMAGES

TYPICAL STRUCTURE OF FAULT ZONES

■ Fault zones usually very heterogeneous, blocks and matrix, internal slickensides

STRUCTURE OF FAULT ZONES

Structure independent of size

FOLIATED ROCK MASSES

In foliated rock masses orientation between foliation and tunnel axis dominates mechanism and thus displacements

INFLUENCE OF DISCONTINUITIES

Shearing along and opening perpendicular to discontinuities can cause stronly anisotropic displacements

DEFINITION OF "SQUEEZING"

- Using standard shotcrete support, reasonable range of ground parameters, and running a Monte Carlo simulation, Radocnic determined a critical oberburden for closed linings
- This relation can be used for a first assessment, if closed lining is feasible
- In case the critical overburden is exceeded, type of lining should be changed to ductile system

CRITICAL OVERBURDEN

$$H_{crit} = (H_0 + H^* \tan \varphi) - 75 \cdot \left[1 - \left(\frac{X}{X + \varepsilon - \varepsilon_0} \right)^2 \right]$$

ε total strain of unsupported tunnel

	X[-]	$arepsilon_{ heta}\left[ext{-} ight]$	$H_{\theta}[\mathbf{m}]$	$H^*[m]$
Full-face excavation	0.062	0.035	100	680
Top heading	0.062	0.045	100	680
Top heading w. Invert	0.030	0.030	75	375

PAST PRACTICE

- Open slots, dense bolting
- Disadvantage: support resistance low, stability relying on bolting

Inntaltunnel

TRADITIONAL SYSTEM

Problem in strongly heterogeneous fault zones; brittle failure of blocks may occur

BOLTS + OPEN SLOTS

- Due to large strains between bolt, grout and rock mass fresh grout can be sheared off
- Low capacity of bolts is the result
- Investigation showed that rib geometry has significant influence on bolt performance (Blümel, 1996)

INFLUENCE OF RIB GEOMETRY

DUCTILE LINING

- Elements, which control the load in the lining
- Requirements:
 - In combination with shotcrete linings low initial resistance
 - Controlled increase of resistance with further deformation
 - Adjustable to a wide range of conditions

LSC YIELDING ELEMENTS, 1st generation

LSC YIELDING ELEMENTS, 2nd generation

Load line for group of 4 elements

APPLICATION OF DUCTILE LINING

BENEFITS

- Compared to open linings, displacement reduced by at least 50%
- Increased safety
- Less disturbance of rock mass

LSC YIELDING ELEMENTS, 3rd generation

- Combination of steel cylinders and porous filling allows:
 - Cheaper production
 - Higher energy absorption
 - More flexibility by variation of steel pipe dimensions and filler properties

System WABE

Poor performance, low energy consumption

hiDCon

- Cement based system
- High initial stiffness likely to cause damage to lining

DISTRIBUTION OF AXIAL FORCES IN THE LINING

Yielding elements limit the loads at the gaps; additional loads in the lining develop due to dowel effect of bolts and shear forces at contact linig-ground

EFFECT OF COMBINED BOLT-LINING SYSTEM

A relatively small increase in support pressure strongly decreases the final displacements and ground disintegration!

CONCLUSION

- When dealing with large displacements, linings have to be designed with great care
- It is important that lining provides controlled build up of resistance during deformation to prevent lining failure
- At the same time, lining capacity should be utilized optimally throughout the whole deformation process
- All support elements have to be compatible with developing strains