DESIGN OF TUNNELS IN VARIOUS ROCK CONDITIONS

Bernhard Kohlböck
IGT Geotechnik und Tunnelbau ZT GmbH
b.kohlboeck@igt-engineering.com

CASE STUDIES

Tauerntunnel, Austria

Gleinalmtunnel, Austria

Typical cross sections

■ 1st tube

Excavation area 102 m²

2nd tube

Excavation area 109 m²

Gravel Section up to TM 380

Construction in cohesionless gravel area

Top heading in coarse blocky gravel

■ Gravel area: boulders obstructing steel metal sheets

Top heading in coarse blocky gravel

Outflow of gravel – ravelling ground

Top heading in coarse blocky gravel

Partial face excavation with 12 sections (average)

Rock section - experience gained from constr. 1st tube

- Squeezing rock conditions
- Extreme top heading settlements up to 1.3 m

Rock section - experience gained from constr. 1st tube

Squeezing rock, buckled steel arches

Rock section - experience gained from constr. 1st tube

- Basis for the design
 - Geological documentation of 1st tube and prognosis of 2nd tube
 - Deformation and convergence measurements of 1st tube
 - Testing programme: uni- & triaxial compression tests, shear tests, dilatometer tests
- → back analysis using ground reaction curve

Uncertainties

- Determination of "real" rock mass parameters is usually very difficult.
- Methods like Hoek-Brown rely on simplifications and estimations.
 - → Back analysis of displacements of 1st tube permits a check of the range of rock parameters
- Interpretation of monitored displacements in 1970ies: no standard 3D monitoring monitoring sections were installed later than nowadays → documented displacements were set as lower limits

Uncertainties

■ Convergence confinement method: Ground reaction curve does not take into account the orientation of schistosity relative to tunnel → different set of rock mass parameters for different orientations

- Determination criteria for rock mass behaviour types
 - Radial displacements r
 - Depth of failure zone DFZ (plastic radius around tunnel) in relation to tunnel radius R (=5.6 m)

- Determination criteria for rock mass behaviour types
 - Radial displacements r
 - Depth of failure zone DFZ (plastic radius around tunnel) in relation to tunnel radius R (=5.6 m)

Rock Mass behaviour type	Criterion	
	Primary	Secondary
Discontinuity controlled block failure	r < 50 (-100) mm	(DFZ < 2.5 m)
Shallow stress induced failure	r < 100-150 mm	DFZ < R
Squeezing rock (deep seated rock induced failure)	DFZ > R	r > 150 mm

- Support Design
 - max. displacement ~12 cm
 absorbable by shotcrete at 1.5-2%
 strain
 - Radial displacements > 12 cm attributed to yielding elements
 - Max. expected displacement 600 mm

Yielding steel elements
Type, number and length adjusted to
lining capacity and displacements
(min. 2)

igure 3. Load displacement diagram for a group of 4 LSCII

- Systematic installation of rock bolts with increasing number and length of bolts in increasingly squeezing rock conditions
 - Max. rock bolt density: 380 running meters of rock bolts per m tunnel
 - rock bolt plates with deformation pipes

Spraying of the shotcrete shell

Construction execution – rock area

Recognizability of squeezing rock conditions

- Documentation of tunnel face does not reliably allow a priori determination of squeezing rock conditions
- Especially predicting slight squeezing areas was difficult
- In places, after an initial decrease of deformation rates long lasting creep deformations occurred

Recognizability of squeezing rock conditions

Refurbishment of sheared and damaged shotcrete shell

- instability of support system
- profile deficiencies

Criterion for installation of yielding elements on site

Depending on deformation within 24 hours

Photo: intact shotcrete lining with use of yielding elements

Criterion for installation of yielding elements on site

Depending on deformation within 24 hours

Photo: intact shotcrete lining with use of yielding elements

Types of yielding elements used

- Lining stress controllers (LSC-elements; DSI)
- Honeycomb type WABE element (Bochumer Eisenhütte)

LSC element after consumption of displacements

Remaining gap to be closed with shotcrete

Trigonometric measurement control of rock deformation

Measurement control

Measurement control: vector plots of deformation

typical deformation in gravel

typical deformation in rock

Comparison of crown settlements

	1. tube	2. tube
Chainage 1100 from north	1300 mm	410 mm
Chainage 1800 from north	200 mm	30 mm
Southern Drive	Max. 200 mm	max. 50 mm

Reasons for less deformations in 2nd tube

- Increase of material quality and technology
- Yielding elements provide support pressure already as the deformations occur, while open deformation slots provide no support pressure at all (except of mobilized shear between shotcrete and rock surface)
- Quicker installation of support
- Higher quality in monitoring and evaluation of deformations
- Experience gained with tunnels in squeezing rock mass

Profile check

dibit 3DView

Inner lining

Ceiling for ventilation ducts

Ventilation system

- Fresh and exhaust air ducts
- 4 ventilation sections for each tube
- 2 inner sections for both tubes supplied + extracted through a 660 m high shaft
- Connection of shaft to tubes: via air supply tunnel + cavern

Ventilation Cavern

- 1970: emphasis on supply of fresh air
- 2005: emphasis on extraction of smoke in case of fire
- Redesign of air ducts in cavern was necessary

Redesign of air ducts in cavern

- Maintenance of traffic → operation of ventilation of at least one tube
- Statical analyses in combination with aerodynamic aspects

Redesign of cavern

■ Oscillations had to be taken into account for the fan bridges → determination of natural frequency

Design of 2nd Tube – Excavation Material

- 1.000.000 m³
 excavation material
- Projects for reuse of material
- Tauernalm service area:
 - 235.000 m³
 filled within
 3 months
 - raising level by max. 7m
- Intermediate stockpiling necessary

Drainage System – Design aspects rehabilitation of 1st tube

- Restrictions of existing abutment
- Avoidance of extensive milling of abutment
- \rightarrow optimized flat slot gutter ($\Delta h = 200 \text{ mm}$)
- Maintainability: culverts

optimized, flat slot gutter

standard slot gutter

Maintainability & Safety - Refurbishment of 1st tube

- existing drainage duct located unfavourably
 → tunnel closure for maintenance works
- problems with man hole covers
- → new drainage pipe in existing duct
- → flushing pipes for maintenance

GLEINALMTUNNEL – 3D view

- L=8320m (third longest road tunnel in Austria)
- 1st tube opened to traffic 1978
- 2nd tube under construction

Typical cross sections

□ Excavation area 102 m²

2nd tube

Excavation area 85 m²

Typical cross sections

Excavation area 102 m²

2nd tube

Excavation area 85 m²

Ventilation bays for jet fans

to control longitudinal velocity of air and to create excess

Excavation area 127 m²

Ventilation system

Standard operation

Incident operation

GLEINALMTUNNEL – Geotechnical Long Section

Design of 2nd Tube - Geotechnics

- Basis for the design
 - Geological documentation of 1st tube and prognosis of 2nd tube
 - Generally no major displacements in 1st tube except in isolated fault zones
 - Testing programme
- Geotechnical design focus
 - joint induced failure
 - rock burst due to high overburden and brittle rock
 - Analysis of fault zones and areas with weak rock (ground reaction curve)

Design of 2nd Tube – Wedge analysis

- Analysis of potentially falling wedges and blocks
 - Identification of governing joint sets
 - 3D stability analysis using "Unwedge" by Rocscience

Design of 2nd Tube - Wedge analysis

- Min. support to prevent falling wedges and blocks
 - Tunnel: 10 cm shotcrete + wire mesh in crown,5 cm in sidewalls
 - Lay-bys, ventilation bays: 10 cm shotcrete +w.m.
 - $lue{}$ Cavern: 20 cm shotcrete + 2 layers of wire mesh $lue{}$

Systematic bolting

Design of 2nd Tube – Rock burst

- Spontaneuos fracture of brittle rock
 - Sudden release of stored elastic strain energy
- Rock burst prerequisites according to Steiner (TU Graz, 2005)
 - □ Potential of rock to store elastic strain energy PES = $UCS_{intact}^2/2xE_{s.intact} < 50$
 - □ Brittleness of the rock
 BRIT= UCS_{intact} / **σ** tensile < 40
 - □ High tangential stress level around tunnel TANG = σ_{tan} / UCS_{intact} > 0,47
 - σ_{tan} ... tangential stress around tunnel σ_{tensile} ... tensile strength of intact rock UCS_{intact} ... uniaxial compressive strength of intact rock $E_{\text{s,intact}}$... Young's modulus of intact rock
- Additional criterion adopted from expert group Semmering base tunnel: GSI min > 75

Design of 2nd Tube – Rock burst

■ Details for classification of rock burst potential (Steiner)

P. e. Strain Energy		Limits	Category	Potential for Rock Burst		
PES	'	50	1	very low		
PES	<	100	2	low		
PES	<	150	3	moderate		
PES	<	200	4	high		
PES	>=	200	5	very high		

Strength Utilization Factor		Limits	Category	Potential for Rock Burst		
TANG	<	0.47	1	no		
TANG	<	0.6	2	weak		
TANG	<	0.7	3	strong		
TANG	>=	0.7	4	violent		

Remark: other authors propose lower limits, e.g. Russenes, Guo

Rock Brittleness		Limits	Category	Potential for Rock Burst		
BRIT	^	40.0	1	no		
BRIT	>	26.7	2	weak		
BRIT	^	14.5	3	strong		
BRIT	<=	14.5	4	violent		

Design of 2nd Tube – Rock burst

- Situation for ground types of Gleinalmtunnel
 - analysis of rock potential

			ROCK MASS				INTACT ROCK								
Ground	γ	ν	UCS	С	φ	Е	GSI	UCS	Е	С	φ	σtensil e	POTENTIAL OF ROCK BURST		
Туре	[kN/m³]	[-]	[MPa]	[MPa]	[°]	[GPa]	[-]	[MPa]	[GPa]	[MPa]	[°]	[MPa]		PES S ² /(2*Ei)	BRIT [UCS/otensile]
amphibolit, granit- GA3gneiss	27	0,25	30	2,5	44	9,5	55	50,0	30,0	n.v.	n.v.	2,6	42	very low	19STRONG
amphibolit, granit- GA2gneiss	27	0,25	30	4	46	15	65	80,72	44,56	27,7	44,0	10,5	73	low	8VIOLENT
GA1 gneiss	27	0,25	30	5	48	25	75	150,82	37,89	12,0	38,0	12,7	300	very heigh	12VIOLENT
GA0gneiss	27	0,25	40	5	48	33	80	217,36	57,31	46,0	55,1	9,9	412	very heigh	22 <mark>STRONG</mark>

□ Comparison of max. overburden (820m) to tangential stresses for various values of $K_0 \rightarrow \text{rock}$ burst not expected

Ground Type	$\sigma_{\rm t} = 2.66 \cdot \sigma_{\rm v}$	$K_0 = 0.33$	$\sigma_t = 2 \cdot \sigma_v$	$K_0 = 1,0$
	H_{crit}	$oldsymbol{\sigma}_{crit}$	H_{crit}	$oldsymbol{\sigma}_{crit}$
GA1	985 m	26,58 MPa	1313 m	35,44 MPa
GA0	1419 m	38,31 MPa	1892 m	51,08 MPa

- Drill and blast NATM heading
- Predominantly full face excavation, if rock conditions allowed

- Rock burst was not detected
- Regular assessment of rock surfaces and joint orientation → 3D image **ShapeMetriX** → assessment of discontinuities

pictures courtesy of G. Pischinger, Geoconsult

- Rock burst was not detected
- Regular assessment of rock surfaces and joint orientation
 → 3D image ShapeMetrix → assessment of discontinuities

pictures courtesy of G. Pischinger, Geoconsult

- Regular wedge analysis
- Systematic roof bolting

View towards tunnel roof

THANK YOU FOR THE ATTENTION!

Credits and proposed Literature

- Criteria for the determination of ground behaviour types Alois Steiner, Master's thesis, TU Graz (2005)
- Tunnel design and prediction of system behaviour in weak ground Nedim Radoncic, Doctoral Thesis, TU Graz (2011)
- Practical Rock Engineering, Evert Hoek www.rocscience.com